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Neural oscillations are observed ubiquitously in the mammalian brain, but their stability is known to be                
rather variable. Some oscillations are ​tonic and last for seconds or even minutes. Other oscillations appear as                 
unstable ​bursts​. Likewise, some oscillations rely on excitatory AMPAergic synapses, but others are GABAergic              
and inhibitory. Why this diversity exists is not clear. We hypothesized Ca -dependent homeostasis could be            2+     
important in finding an explanation. We tested this hypothesis in a highly simplified model of hippocampal                
neurons. In this model homeostasis profoundly alters the modulatory effect of neural oscillations. Under              
homeostasis, tonic AMPAergic oscillations actually ​decrease excitability and ​desynchronize firing. Tonic           
oscillations that are synaptically GABAergic–like those in real hippocampus–don’t provoke a homeostatic            
response, however. If our simple model is correct, homeostasis can explain why the theta rhythm in the                 
hippocampus is synaptically inhibitory: GABA has little to no intrinsic homeostatic response, and so can               
preserve the pyramidal cell’s natural dynamic range. Based on these results we can also speculate that                
homeostasis may explain why AMPAergic oscillations in cortex, and hippocampus, often appear as bursts.              
Bursts do not interact with the slow homeostatic time constant, and so retain their normal excitatory effect. 
 

N​EW ​AND N​OTEWORTHY The intricate interplay of neuromodulators, like acetylcholine, with           
homeostasis is well known. The interplay between oscillatory modulation and homeostasis           
is not. We studied oscillatory modulation and homeostasis for the first time using a              
simplified model of hippocampus. We report a paradoxical result: Ca-mediated          
homeostasis causes AMPAergic oscillations to become effectively inhibitory. This result,          
along with other new observations, means homeostasis might be just as complex and             
important for oscillations as it is for other neuromodulators. 

Introduction 

Neuromodulation and homeostasis can be thought of as inter-linked but opposing           
phenomena. Neuromodulation perturbs excitability, which we define as the propensity for           
a stimulus to elicit an action potential. Homeostasis acts to quench this perturbation,             
driving the excitability of the cell back to a biologically desirable set point (LeMasson,              
Marder, and Abbott 1993; Abbott and LeMasson 1993). While the interplay between            
chemical modulators and homeostasis has been studied for more than 20 years (LeMasson,             
Marder, and Abbott 1993; Abbott and LeMasson 1993; Golowasch et al. 1999; Marder,             
O’Leary, and Shruti 2014; Marder, Goeritz, and Otopalik 2015; Gutierrez, O’Leary, and            
Marder 2013), the relationship between population-level synaptic modulations–like neural         
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oscillations–and homeostasis is not well understood. It is not well understood theoretically,            
or well-studied experimentally. 

Like neuromodulators, neural oscillations are ubiquitous and alter the excitability and           
firing statistics of cells throughout the brain. Uniquely though, oscillations group action            
potentials into synchronous windows of activity (Lisman and Jensen 2013; Voytek and            
Knight 2015). Grouping action potentials improves their signal to noise, increases the            
number of coincident firing events (Chen et al. 2013; Zhou et al. 2015; Voytek et al. 2015;                 
Peterson and Voytek 2017), that in turn drives learning at individual synapses (Muller,             
Brette, and Gutkin 2011; Song, Miller, and Abbott 2000; Markram 1997). 

We propose the same mechanisms that link homeostasis with chemical neuromodulation           
should also come into play with oscillatory modulation. After all, both kinds of modulation              
can lead to tonic changes in spiking and, as a result, changes in Ca​2+ concentration (Liu et al.                  
1998). To test this, we model activity-dependent intrinsic homeostasis in a feed-forward            
population of hippocampal pyramidal cells (Siegel, Marder, and Abbott 1994). By           
feed-forward we mean there are no lateral or recurrent connections in the population.             
Firing activity is driven only by afferent synaptic input, and homeostasis is mediated by a               
Ca​2+​-dependent mechanism (Golowasch et al. 1999; Marder, O’Leary, and Shruti 2014;           
Marder, Goeritz, and Otopalik 2015; Gutierrez, O’Leary, and Marder 2013; O’Leary et al.             
2014) whose early work was pioneered by LeMasson (LeMasson, Marder, and Abbott            
1993; Abbott and LeMasson 1993). In our model Ca​2+ acts as a sensor for tonic changes in                 
the membrane voltage. To counter tonic changes in Ca​2+ levels, the expression of ion              
channels is altered, returning the Ca​2+ level to a predefined “good” value (Golowasch et al.               
1999; O’Leary et al. 2013). Following Siegel (Siegel, Marder, and Abbott 1994), increases in              
Ca​2+ lead to downregulation of Na​+ and upregulation of fast K ​+ channels. To minimize the               
effect of homeostasis on overall action potential magnitude, we also added a KCa channel              
(Siegel, Marder, and Abbott 1994). In real cells intrinsic homeostasis changes the            
expression level of ion channels (O’Leary et al. 2013). Here, these details are not directly               
simulated. Instead we mimic the net or bulk effect of all ion channels using a single                
equation (LeMasson, Marder, and Abbott 1993; O’Leary et al. 2013; O’Leary et al. 2014). 

Given that chemical modulators operate on both short and long times scales (Marinelli and              
McCutcheon 2014; Marder, O’Leary, and Shruti 2014; Cohen, Amoroso, and Uchida 2015;            
Daw, Kakade, and Dayan 2002), we examined two timescales of oscillatory modulation. We             
contrast the effects of short 3-cycle bursts of oscillation to long lasting tonic rhythms. Both               
are observed ​in vivo​, and are known to play different physiological, cognitive, and             
computational roles (Lundqvist et al. 2016; van Ede et al. 2018a; Peterson and Voytek              
2017). We also explore synapse type, examining both AMPA- or GABA-ergic oscillations. 

Results 

We assessed the impact of homeostasis in a simple model that received oscillatory inputs              
that are either transiently bursting, or long lasting and tonic. We found that increasing the               
strength of AMPAergic oscillatory inputs resulted in a homeostatic response that, when            
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reaching an appropriate level of average calcium, overcompensates to actually decrease the            
postsynaptic neuron’s spiking. That is, paradoxically, an increase in drive– when combined            
with homeostasis–results in a decreased response. 

Specifically, we study Ca​2+​-mediated homeostasis in a feed-forward population of 100           
Hodgkin-Huxley neurons. By feedforward we mean neurons in the population are driven            
only by the inputs to the model. Cells have no lateral or recurrent connections. We               
modulate this population with neural oscillations. Oscillatory input for each cell in            
Hodgkin-Huxley population was modeled as a set of about Poisson neurons         00M = 1    
(Figure 1​b​- ​c​). With a probability of 0.1 these were randomly drawn from a pool of 1000               
Poisson neurons, each of which was independently simulated. To change the level of             
oscillatory modulation strength, we altered the firing rate of the entire Poisson population.             
Average synaptic strengths were fixed, but drawn from a uniform distribution for each             
simulation (see ​Methods​). An oscillation’s temporal duration was simulated as either tonic            
(Figure 1​b​, top), which lasted for the entire experiment (20 sec), or as a 3-cycle burst               
(Figure 1​b​, bottom). Bursts were delivered only at the end of a trial, where they overlap               
with the input stimulus (Figure 1​a​- ​b​). The stimulus input was also taken from an             
independent set of about Poisson cells. Stimulus and oscillation populations were    00M = 1         
independently simulated. The stimulus lasted 0.5 seconds, and had an average firing rate of              
6 Hz, and was fixed for all experiments. During the stimulus window we measured the               
population’s firing rate and synchrony. It is these numbers we report throughout. 
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Figure 1: The model, its inputs, and some example results. We show examples with and               
without homeostasis, of both bursts (goldenrod) and tonic oscillations (black). ​a​- ​b​. Inputs            
into the model. ​a. The stimulus, which is used to estimate the model population’s              
synchrony and excitability. ​b. Two example input oscillations, a tonic example (black) and a              
burst example (goldenrod). Note: the insets in for the panels above depict input spikes over               
the last 1 second of run time. Black lines in these inset panels represent average firing rates                 
calculated using 1 ms bins. ​c. Illustration of a single model neuron, its major currents, and                
the major equations for intrinsic homeostasis.. ​d.​- ​e. Example of model output with            
homeostasis dynamics turned off. ​d. Is the membrane voltage, plotted in time. ​e. Depicts              
the Na, K, and KCa conductances, which are in this case fixed. ​f.​- ​g. Example of model output,                 
with the homeostasis dynamics turned on. ​f. Is the membrane voltage, plotted in time. ​g.               
Depicts changes to Na, K, and KCa conductances with time.  

 

Each experiment began with an instantiation of a randomly generated population. A single             
example neuron is depicted in Figure 1 ​c​. This population is subjected to a range of              
modulatory and control conditions, including oscillatory strength, duration, and synapse          
type (AMPA or GABA). Each experiment lasted 20 seconds. In Figure 1 ​d​- ​g we depict key              
aspects of model output during an experiment. 

After homeostatic equilibrium is reached, we measure two features: the synchrony           
between action potentials (measured by the Kappa correlation) and changes in the            
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excitability of the system (measured as a change in population firing rate). Both of these               
measures are defined in the ​Methods​. To ensure a consistent comparison between            
experiments, measurements were made over the same 0.5 second period in all simulations.             
Source code for all simulations is available at        
https://github.com/voytekresearch/resistingrhythm 

The homeostatic response in our simple model decreases the sodium conductance and            
increases potassium conductances (Figure 1 ​g​, ​bottom panel ​). Combined, these changes         
make it harder for the model to initiate action potentials and extends the recovery period               
after a spike. These two changes combine to explain the loss of excitability in some               
conditions of our model. 

Note that in real systems intrinsic homeostasis is thought to happen over minutes or days.               
However, simulation times that are hours or days long are not computationally feasible. So              
we follow the field and study a model where Ca​2+ homeostasis dynamics happen with a               
4-second half-life, denoted by . This might seem like a huge difference. But all that    τ h            
matters mathematically is that homeostasis dynamics happen much slower than all the            
other synaptic/membrane dynamics. A timescale of seconds is a reasonable choice      τ h > 4       
to ensure this. The other major dynamics in the model are synapses with ms             0< 3   
half-lives, leaving us with a 133-fold difference between the time scale of synaptic and              
homeostatic dynamics (Golowasch et al. 1999; Marder, O’Leary, and Shruti 2014; Marder,            
Goeritz, and Otopalik 2015; Gutierrez, O’Leary, and Marder 2013; Marder, O’Leary, and            
Shruti 2014; O’Leary et al. 2014; LeMasson, Marder, and Abbott 1993; Abbott and             
LeMasson 1993). 

Excitatory modulation. 

Homeostasis completely inverts the effect of tonic AMPAergic oscillatory modulation.          
These excitatory oscillations cause decreases in population firing rate and population           
synchrony. To see how, let’s consider how the population responds to a tonic excitatory              
modulation ​without homeostasis. Without homeostasis, increasing the strength of the          
excitatory oscillation increases excitability, and so increases the population firing rate           
(Figure 2​b​, black line). 
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Figure 2: ​The effect of oscillatory modulation on synchrony–which is measured using the             
Kappa correlation (Eq. 11)–and excitability, measured by the population firing rate. Tonic           
oscillations are shown in grey and black. Bursts are shown in light and dark yellow. ​a.​- ​b.                
Increases in tonic modulation strength, without homeostasis. This is our reference           
condition. Top panel (a.) is the observed population firing rate averaged over the 0.5              
second stimulus. Bottom (b.) is synchrony over the same period. ​c.​- ​d. Same experiment as              
a-b but with Calcium-mediated homeostasis, showing how homeostasis with tonic AMPA           
oscillations reduces population firing and synchrony. ​e.​- ​f. Burst modulation, presented          
during the stimulus period (4 cycles of oscillation, onset time: 19.5 s). ​g. Change in               
excitability between bursts and tonic rhythms for all oscillation firing rates. Asterisks            
denote a significant difference using the Wilcoxon rank sum test ( ).          886.5, .2e−16  W = 1 p < 2  
The frequency of the oscillatory rhythm was fixed at  in all models.f = 8  

 

With homeostasis in play, this pattern inverts. As excitatory oscillatory modulation           
strength increases, synchrony and excitability ​decrease (Figure 2​c-d ​). Homeostatic         
mechanisms in the model cause what ​should be excitatory synchronizing modulation to            
become suppressive and desynchronizing. The stronger the oscillation, the more          
suppressive the result. By the time the oscillation is about half the strength of the stimulus                
(which we fix at a firing rate of 6 Hz) the response to the stimulus is completely suppressed                  
and the population firing rate approaches 0 (Figure 2​c ​). 

We compared the effect of these tonic oscillations to short 3-cycle bursts of modulation,              
presented only during the stimulus. Here, the oscillation period is far too short to provoke               
much, if any, homeostasis. This lets bursts sidestep our early results, and so increases in               
oscillatory strength continue to increase population firing rate and synchrony (Figure 2 ​e           
and ​f​). 

Of course theta oscillations in the hippocampus are GABAergic (Colgin 2016a), not            
AMPAergic as we model here. However by exploring artificial AMPAergic oscillation we can             
demonstrate the central principle we want to highlight. It seems that tonic            
oscillations–when joined with homeostasis–can profoundly alter the coding properties of          
what one would typically expect from oscillatory modulation, and the degree of this effect              
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depends entirely on the degree to which the oscillation changes the cell’s tonic Ca . And              2+   
that because of this, bursts of oscillation are ​qualitatively distinct from their tonic             
counterparts. 

The specific effect we observed (suppression of excitability) is seen because the            
homeostatic equations that ​we chose respond to changes in Ca​2+ by decreasing the             
conductance of the Na, and increasing the conductance of K and KCa channels (Eq. 8). This               
makes firing an action potential less likely, for any given input. These channel dynamics are               
visualized in Figure 1​g​ and a corresponding FI curve is shown in Figure 4. 

The general effect we would expect for some other selection of channels, chosen by some               
other theorists, or by evolution itself, depends strongly on those selected channels. O’Leary             
(O’Leary et al. 2014) has made it clear how complex the relationship is between              
homeostasis, channel conductance, and firing patterns. It’s so complex that we believe            
general statements are probably impossible, at least as they might relate to this paper.              
While our simple model has been shown by others to recapitulate hippocampal pyramidal             
cell’s activity in laboratory settings (LeMasson, Marder, and Abbott 1993), it is a ​very simple               
model, and validating our work does require new experimental testing. This could be done,              
for example, by using prolonged excitatory gamma oscillations–arising from direct          
stimulation of either the medial entorhinal cortex or CA3–to drive a possible homeostatic             
response in CA1 (Csicsvari et al. 2003; Colgin et al. 2009). 

Our model shows that there is sometimes an inversion in population synchrony, as seen in               
Figure 2​d and 5​b ​. We believe this is a low effect: as population spiking is suppressed, the         N        
total number of spikes declines to the point where the bins used to calculate the Kappa                
correlation are often empty. This leads to a somewhat misleading “increase” in synchrony. 

Inhibitory modulation. 

GABAergic oscillatory modulation does not lead to a homeostatic response in our model.             
This is true for both tonic oscillations and bursts. No matter the homeostatic state, as               
GABAergic strength increases population firing declines (grey lines in Figure 2​a-d and light             
yellow lines in panel ​e-f​). 

In the work so far, Figure 2, we compared AMPA and GABAergic models of the theta               
rhythm (8 Hz). This was done to illuminate their different effects, but was not a biologically                
realistic model. Hippocampal theta is solely a GABAergic rhythm, at least when driven by              
medial septum (Colgin 2016). AMPAergic oscillations are, however, seen in the high gamma             
range (60-90 Hz) (Csicsvari et al. 2003; Colgin 2016a). In Figure 3 we confirm AMPAergic              
oscillations in the gamma range follow the same pattern as theta. Both 60 and 90 Hz                
gamma rhythms can suppress excitability and desynchronize firing. 

Homeostasis and excitability. 

In our model Ca​2+ influx is driven by increases in the membrane voltage but the Ca​2+                
concentration is restored by passive and linear recovery (Eq. 9), and active homeostasis            
(Eq. 8). Homeostasis works by negative feedback. Increases in Ca​2+ concentration decrease           

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted May 30, 2020. . https://doi.org/10.1101/615450doi: bioRxiv preprint 

https://doi.org/10.1101/615450
http://creativecommons.org/licenses/by-nc-nd/4.0/


the conductance of both the Na and K channels in our model (Eq. 7). This decrease in                
conductance in turn lowers the membrane voltage down closer to its resting value. As the               
voltage falls so does the Ca​2+ concentration. The excitability changes we see with             
homeostasis must be due to the decreases in Na conductance (which initiates spikes) and              
increases in K conductance (which recovers the voltage following a spike). 

One of the simplest, most classic ways to measure the excitability of a cell–simulated or               
real–is with an FI-curve. In an FI-curve a small square wave of current is injected into the                 
cell, and the resulting increase in firing rate (if any) is averaged over a short window. In                 
Figure 4 we show the average FI-curve for 100 simulated hippocampal neurons. Under            
homeostasis the FI-curve is lower, which means there has been a substantial suppression             
in the membrane excitability. 

 

 

Figure 3: ​The effect of fast AMPAergic gamma oscillations for both tonic oscillation and              
3-cycle bursts. Top panel (​a​.) is the observed population firing rate averaged over a 0.05               
second or 0.033 second stimulus. Bottom (​b ​.) is synchrony over the same period. Columns              
in both a. and b. represent with 60 or 90 Hz gamma. The stimulus window was matched to                  
the length of time 3 cycles of oscillation would take. To generate this curve the model was                 
equilibrated for 20 seconds, under a 1.5 Hz firing rate and 8 Hz frequency rhythm, after                
which the current impulse that we described above was applied. During FI-curve            
estimation there was no oscillation present.  
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Figure 4: ​Excitability and homeostasis. An average FI-curve for 100 hippocampal neurons,            
with (black) and without (grey) homeostasis. In both models, oscillation was tonic and             
AMPAergic. The square-wave pulse lasted 0.1 seconds, and ranged from 0.1 to 1 amps,             μ  
sampled every 0.01 amps.μ   

 

Controls and perturbations. 

To ensure our parameter choices in the model were generalizable, we perturbed several             
key values by 10-20 percent. 

When the model is run with only stimulus-driven homeostasis, the Ca​2+ concentration            
equilibrates to about 0.003 mM. We used this as a standard target value for all modulation                
experiments, until now. When we vary this value in 0.0002 mM increments, population rate              
and synchrony either increases or decreases depending on whether the Ca​2+ increases or             
decreases, shown Figure 5​a-b ​. However despite different initial Ca​2+ concentrations, each           
model still shows an identical set of trends as the strength of the oscillation increases               
(Figure 5). That is, increasing or decreasing the target concentration shifts the overall             
excitability of the population, in an approximately linear way. This means that while the              
initial choice of 0.003 mM was arbitrary, the qualitative pattern of results we report is not                
dependent on this choice. 

We chose a 3-cycle length for bursts somewhat arbitrarily. Real oscillations range in             
duration from single cycles to seconds of even minutes (Lundqvist et al. 2016; van Ede et al.                 
2018). Our burst/tonic distinction is therefore a false (but useful) dichotomy. To find a              
better estimate of how long an oscillation would need to last, on average, to generate a                
homeostatic response we ran some long simulations using a more realistic homeostatic            
time constant ( = 600 seconds; up from 4 seconds). It seems an oscillation would need to  τ h                
be present ​at least 10% of the time to generate a response (Figure 5 ​c​). Jacobs (Jacobs               
2014) estimated the prevalence of hippocampal theta to be about 40% of the time in rats,                
and 10% in humans. So even for humans, who have slower and less stable theta rhythm(s)                
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(Goyal et al. 2018), we’d expect an homeostatic response from AMPAergic theta, if it              
existed. 

 

Figure 5: ​Control experiments. ​a. Population firing rate for different levels of target [Ca]              
(colors). All values are referenced to a no-modulation control. ​b. Change in population             
synchrony for different levels of target [Ca] (colors). All values are referenced to a              
no-modulation control. ​c. Change in population rate as the oscillation duration approaches            
a more realistic , the half-life of the homeostasis dynamics (Eq. 8). In this control   τ h            
experiment we used a more biologically realistic of 600 s (or 10 minutes). All other       τ h          
simulations in the report use a of 4 seconds, which is well below most reports of this      τ h             
value in real systems. However in choosing such a small value we follow the majority of the                 
homeostasis modeling literature (for more on this see the Discussion). ​d​.- ​e​. The effect of              
frequency drift (see legend) on homeostasis with tonic AMPAergic modulation. ​f​.- ​g​. The            
effect of altering the leak conductance ( ) on homeostasis with tonic AMPAergic      gL       
modulation​. 

 

Real theta rhythms drift in frequency (Buzsáki and Schomburg 2015; Jacobs 2014). To test              
if small differences in frequency have a notable effect, we simulated small drifts in              
frequency of theta ranging from 6-10 Hz. Frequency drift had no visible effect on the               
homeostatic suppression of excitability (Figure 5​d​- ​e​). 
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The leak conductance ( , Eq. 7) plays a key role in setting the resting potential of the cell.   gL               
The resting potential in turn helps determine the overall membrane excitability, and sets             
the resting Ca​2+ concentration. This means our Ca​2+ set point (of 0.003 mM) depends on .               gL  
To test if a small mismatch between and the Ca​2+ set-point altered our results, we ran       gL           
several experiments perturbing the leak conductance while keeping Ca​2+ fixed, but in the             
end mismatch in leak conductance had only a small effect on homeostasis (Figure 5​f​- ​g​). 

 

Discussion 

Our scientific understanding of homeostasis has been shaped as much by theoretical work             
as empirical (Marder, O’Leary, and Shruti 2014). In an attempt to understand the             
interaction between oscillatory modulations and homeostasis, we began by studying one of            
the simplest models used in early studies of homeostasis–a population of point neurons in              
the hippocampus (LeMasson, Marder, and Abbott 1993). 

Our simple models offer answers to three basic questions. One, do tonic oscillations engage              
homeostatic mechanisms? Two, does homeostasis in turn change the oscillation’s function?           
Three, do short bursts of oscillation have distinct effects from tonic oscillations? Put             
another way: can homeostasis explain why some oscillations, such as hippocampal theta,            
tend to appear as tonic rhythms while other oscillations (like those in cortex) tend to               
appear as bursts? (Peterson and Voytek 2017; Cole and Voytek 2018; van Ede et al. 2018) 

Oscillations are generally conceived to play a functional role in modulating spiking (Fries             
2015; van Ede et al. 2018) by grouping action potentials and improving signal to noise               
(Chen et al. 2013; Zhou et al. 2015; Voytek et al. 2015; Peterson and Voytek 2017). Absent                 
the effects of homeostasis, our model clearly demonstrates this: with increasing           
modulation strength, excitatory oscillations show increased firing rate and synchrony.          
Given this effect, and the importance of phase coding in the hippocampus (Lisman and              
Jensen 2013), it is reasonable to wonder why hippocampal oscillations are GABAergic. Our             
model suggests that while this is true for brief, bursty excitatory oscillations, stronger,             
tonic excitatory oscillations engage homeostatic mechanisms that alter Na and K           
conductances, driving down the membrane voltage. This, in turn, reduces both the firing             
rate and spike synchrony in response to inputs. 

Homeostasis is generally viewed as a stabilizing force. This is the goal of homeostasis in our                
model as well. However oscillatory modulation is a unique form of modulation; it shares              
neurotransmitters, and even synapses, with non-modulatory stimuli. As a result,          
homeostatic corrections for modulation must affect both the modulator and the driver            
(Sherman and Guillery 1998). Our work suggests this trade-off can be quite strong. To              
avoid this trade-off, sometimes anyway, we speculate that the long-time scale of evolution             
may sometimes favor different types of oscillation for different functional roles. 

Bursting, rather than sustained, oscillations tend to be common in the cortex. One striking              
example is in motor cortical regions, where beta ( 12-30 Hz) bursts are prevalent and likely               
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functional. Specifically, beta bursts are very short–sometimes lasting only one or two cycles             
(Sherman et al. 2016; Cole and Voytek 2019; Jones 2016)–and relate to self-timed             
movements (Feingold et al. 2015). Patients with Parkinson’s disease show increased motor            
rigidity and bradykinesia, symptoms associated with prolongation of beta bursts          
(Tinkhauser et al. 2017). Levodopa treatment was shown to decrease burst probability and             
duration, and that decrease in burst duration correlated with motor improvement           
(Tinkhauser et al. 2017). Our work here suggests some of the pathophysiology in             
Parkinson’s may be due to intrinsic homeostasis.  

An important counterexample to healthy beta bursts is cortical alpha (8-10 Hz) in visual              
cortex. Alpha is tonic and high powered when humans rest with their eyes closed. Even               
though both cortical and subcortical alpha generators are synaptically excitatory, this           
rhythm has however been associated with suppression of excitability (Jensen 2002;           
Bonnefond and Jensen 2012; Peterson and Voytek 2017). While several competing           
explanations have been offered for this (Bonnefond and Jensen 2012; Lange, Oostenveld,            
and Fries 2013; Peterson and Voytek 2017), our work raises another possibility that is              
complementary to the others. Specifically, though we modeled hippocampal cells, the same            
Ca​2+ homeostatic mechanisms exist in visual cortex (and the neocortex as a whole). This              
means that strong and tonic alpha oscillations, combined with homeostasis, should directly            
suppress population firing in visual cortex. Such an effect, were it to occur, would last well                
past the moment of oscillation offset an effect of alpha that has been reported in the                
literature (Jensen 2002; Bonnefond and Jensen 2012). In these studies the physiological            
mechanism was unclear. Our work suggests that it might be intrinsic homeostasis. 

Limitations 

The nature of our model–the fact that we use point neurons with only 6 currents–or the                
fact that our model is strictly feed-forward–without lateral or recurrent          
connections–means we don’t know with confidence to what degree our model’s effects will             
appear in more complex models, or in real neural systems. O’Leary (O’Leary et al. 2014)               
and others have shown how exceptionally complex the homeostatic response is. It is             
therefore likely some neurons will have a homeostatic response that is nothing like that in               
our model. Others may be naturally immune to oscillatory effects. There may be many such               
examples. 

We do know, however, that oscillations are a ubiquitous feature of cortical and subcortical              
activity, as is Ca​2+​-mediated intrinsic homeostasis. This means the ingredients for           
oscillation and homeostasis to interact are omnipresent in both subcortical and cortical            
areas. This response might be very different from what we found. 

The basic mechanisms of Ca​2+​-mediated intrinsic homeostasis are conserved across phyla           
(Tran et al. 2017). Meaning the qualitative properties of our model may also be present               
across phyla. That said, the mechanisms for homeostatic interactions, along with their            
quantitative properties, depend on a number of factors specific to each cell and circuit.              
These include the duty cycle, power, and frequency of an oscillation, as well as on synaptic                
strengths and their location in the dendritic tree (an idea we return to below). It also                

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted May 30, 2020. . https://doi.org/10.1101/615450doi: bioRxiv preprint 

https://doi.org/10.1101/615450
http://creativecommons.org/licenses/by-nc-nd/4.0/


depends on the other inputs into the cell, both from fast synaptic transmission and other               
(slower) modulators, as well as connection type; simulation studies suggest that recurrent            
connections can strongly interact with homeostatic regulation (Harnack et al. 2015). The            
temporal and spatial scales of these factors will strongly influence Ca​2+ dynamics, which is              
in turn central to governing what, if any, homeostatic effects oscillations may generate. 

We did not study synaptic homeostasis. Synaptic homeostasis can also play a key role in               
combating oscillatory perturbations (Cannon and Miller 2016). There is some evidence that            
intrinsic homeostasis appears linked to excitatory synaptic homeostasis (Joseph and          
Turrigiano 2017). Still, the exact nature of the homeostatic response depends on how, and              
to what degree, oscillatory and other sensory or internally driven inputs share synapses.             
This, in turn, requires considering complex dendritic arbors and their effect on            
homeostasis (LeMasson, Marder, and Abbott 1993), neuromodulation (Jadi et al. 2012; Jadi            
and Sejnowski 2014), and computation (Mainen and Sejnowski 1996; Polsky, Mel, and            
Schiller 2004; Mel and Schiller 2004). Considering these interacting effects together is the             
next step needed to develop a clearer biological understanding of modulatory oscillations.            
For inhibitory oscillations the case is even more complex: Ca​2+ in these cells does not               
appear to regulate intrinsic homeostasis, but synaptic homeostasis is under a separate            
mechanism of control (Joseph and Turrigiano 2017). 

Previous work 

Homeostasis has been extensively studied in the rhythmic pacemaker present in the crab             
and lobster stomatogastric ganglion, where homeostasis stabilizes these oscillations         
(Golowasch et al. 1999), and interacts with neuromodulation in a ​highly state dependent             
way (Marder, O’Leary, and Shruti 2014; Marder, Goeritz, and Otopalik 2015; Marder,            
O’Leary, and Shruti 2014). Like our model though, the oscillation present in the             
stomatogastric ganglion is tonic. This means it could in principle drive a secondary             
homeostatic response. However, synapses in the stomatogastric ganglion circuit are          
predominantly inhibitory (Marder, Goeritz, and Otopalik 2015). If our model predictions           
held up for this circuit we would expect there to be no secondary response. 

The interaction between homeostasis and oscillations has previously been considered in a            
simple model of cortex. Cannon and Miller (Cannon and Miller 2017) explored how             
synaptic homeostasis can effectively minimize the effect of modulatory perturbations, thus           
maximizing mutual information between an incoming oscillatory signal and a single cell’s            
firing pattern. But the oscillatory input in this work was treated as a signal, and not a                 
modulator itself (Cannon and Miller 2017). We believe this is an important distinction, and              
our analysis is an inverse complement to (Cannon and Miller 2017). We studied how to               
minimize the perturbation caused by an oscillator, rather than how to maximize its             
transmission. 

Conclusion 

Here, using a relatively simple model of hippocampal neurons, we observe a            
surprising–even paradoxical–result: that homeostatic effects can invert a normally         
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synchronizing excitatory oscillatory neuromodulator and cause it to become inhibitory and           
desynchronizing. 

If our simple model is right, we conjecture that intrinsic homeostasis can explain why tonic               
theta rhythms in the hippocampus are synaptically inhibitory. To make this clearer,            
consider the alternative: if the theta rhythm was strong, tonic, and synaptically excitatory,             
our model suggests this could lead to an equally strong–but opposing–homeostatic           
response. Such a response can mean that sodium conductance decreases, which in turn             
decreases the likelihood a hippocampal neuron would respond to any given stimulation. 

In effect, the homeostatic response to strong excitatory oscillations consumes a substantial            
portion of each cell’s dynamic range. On the other hand, inhibitory oscillations–which do             
not generate an intrinsic homeostatic response–leave the dynamic range of neurons intact.            
This may also explain why neocortical oscillations tend to be short and bursty, and why               
some neurological disorders, such as Parkinson’s disease, are associated with prolonged           
excitatory rhythms. 

Methods 

Mathematical model 

We model an unconnected population of hippocampal neurons, subjected to oscillatory           
modulation. This is instantiated as input cells connected to     000N = 1      00M = 1  
Hodgkin-Huxley neurons. The cells in the population were tuned to mimic regular firing   M            
(Borgers, Epstein, and Kopell 2005; Borgers, Epstein, and Kopell 2008). The firing pattern             
of each input cell (both stimulus and modulation) is from a Poisson process, with a               
time-varying rate. cells oscillate. serve as input. For simplicity, we let so  N o    N s         N o = 2

N   
. All input cells have a connection probability to the hippocampalN o = N s       .1p = 0       

population. The hippocampal population has no lateral or recurrent connections. The           
synaptic weights for all connections were independently sampled from a    N → M   w       
uniform distribution, S. The firing rate of the oscillating population was  (5, 0)w ~ U 5  μ          
governed by a biased sinusoidal pacemaker, with amplitude and frequency , with the        2

ro    f    
exact form . As a result, defines the peak firing of the oscillation but  (1 in(2πf t))2

ro + s + rb     ro          
is the total drive experienced by each cell. For simplicity though we remove the  ro + rb               

constant bias term in our plots (Figures 2,3,5); it is present in all our simulations, tonic   rb              
oscillations and bursts. The stimulus population was simply modeled by a fixed rate of 6 Hz                
( ).rs  

Hodgkin-Huxley dynamics were governed by 4 active ionic currents ( , , , )         INa  IK  IKCa  ICa  
and the passive leak current ( ). Besides (which is discussed below),     (E −V )  I l = gl l   ICa      
active currents are governed by the standard Hodgkin and Huxley form (Hodgkin and             
Huxley 1952). Where and respectively track the opening and closing channel kinetics,   m   h          

and are channel dependent parameters, and is the channel appropriate Nernstp   q       V i       
reversal potential. See ​Table 1​ for the complete set of parameters. 
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                                                                m h (V −V )  I = g p q
i (1) 

The Ca​2+ current was governed by a form taken from the Morris-Lecar model (Morris   ICa             
and Lecar 1981; LeMasson, Marder, and Abbott 1993; Siegel, Marder, and Abbott 1994). 

[1 anh( )(V −V )]                                                          ICa = gCa + t V 2

V −V1
Ca  (2) 

Overall membrane dynamics were governed by these internal ion conductances, and two            
synaptic input terms, and . These are, respectively, the stimulus and oscillatory   Is   Io         
inputs. All synaptic input, both stimulus and oscillation were governed by single            
exponential kinetics, which we denote generically using an  subscript below.x  

g (V −V )  Ix = − x x  (3) 

g δ(t−t )τ x dt
dgx = − x + gx

j
x  (4) 

As a concrete example of using the abstract form in Eq. 3-4, let’s define the stimulus. Spikes                
arriving from some jth neuron are denoted by . The stimulus was always excitatory, so        txj         
to define we substitute in AMPAergic voltage, conductance, and time constant values  Is            
taken from Table 1 in for  (above), giving Eqs. 5-6.x  

g (V −V )  Is = − e e (5) 

g δ(t−t )τ e dt
dge = − e + ge

j
s  (6) 

To define we make a similar set of substitutions, choosing either AMPAergic or  Io             
GABAergic values, depending on which kind of oscillation we wish to simulate. Having             
defined both internal dynamics and synaptic dynamics we arrive at the final model, stated              
in terms of its biophysical currents (Eq. 7). 

C dt
dV = I l + INa + IK + IKCa + ICa + Io + Is  (7) 

Eq. 7 would mark the end of a traditional Hodgkin-Huxley definition. However modelling            
intrinsic homeostasis means altering both inward and outward conductances in response           
to changes in Ca​2+ concentration. Following the previous work of (LeMasson, Marder, and             
Abbott 1993) and (Siegel, Marder, and Abbott 1994), we modeled this by having maximal              
conductances , , , and non-linearly vary with the Ca​2+ concentration, gNa  gK  gKCa   gCa        aC  
(Eq.8). In this scheme and during homeostatic equilibration, conductances drift until the            
target Ca​2+ concentration is met, denoted as . In a control experiment a range of       CT         CT  
values were explored (Figure 5), though simulations default to 0.003 mM; the value the              
system reaches with stimulation ( Hz) without modulation ( ). The symbol in    rs = 6     ro = 0   ±    
equation 8 denotes the direction of ion flow and is for inward going currents and          +)(       −)  (  
for outward going. 

                                                            τ h dt
dgx = Gx

1+e±(Ca−C )/ΔT
 (8) 
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Ca​2+ dynamics were assumed to follow first order kinetics, driven by the Ca​2+ influx current               
and clearance rate constant . Values for both  and  were taken from (Liu et al. 1998).k γ k  

kCa−γIdt
dCa = − Ca (9) 

Estimating excitability and synchrony 

We measure excitability by comparing average firing rate of all neurons in an          M     
experiment, with ( ) and without modulation ( ).rm rm  

r −r   Δ = rm m (10) 

We measure synchrony using , a binned measure of spiking covariance (Wang and    κ          
Buzsáki 1996). Where and for and with   (l)  or 1  X = 0   (l)  or 1  Y = 0   1, , .., }l = { 2 . K    

./KT = τ  

(τ )   κij =
(l)Y (l)∑

K

l
X

√ (l) (l)∑
K

l
X ∑

k

l
Y

(11) 

(τ ) (τ )  κ = 1
N ∑

N

i
∑
N

j
κ ij (12) 

 

 

 

Symbol Range (unit) Description 

f  8 (Hz) Oscillation frequency 

ro  0 - 6 (Hz) Oscillation firing rate 

rs  6 (Hz) Stimulus firing rate 

rb  2 (Hz) The “background” firing 
rate 

C  1 ( F)μ  Membrane capacitance 

τ h  >4 (sec) Homeostasis time constant 

w  5 - 50 ( S)μ  Synaptic weight 

τ e  5 (msec) Excitatory synaptic time 
constant 

τ i  10 (msec) Inhibitory synaptic time 
constant 

V e  0 (mV) Excitatory synaptic reversal 
potential 

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted May 30, 2020. . https://doi.org/10.1101/615450doi: bioRxiv preprint 

https://doi.org/10.1101/615450
http://creativecommons.org/licenses/by-nc-nd/4.0/


V i  -80 (mV) Inhibitory synaptic reversal 
potential 

p  0.1 Connection probability 
(stimulus, modulation) 

CT  0.0028-0.0032 (mM) Target Ca​2+​ concentration 

GNa  360 ( S)μ  Initial Na conductance 

GK  120 ( S)μ  Initial K conductance 

GKCa  60 ( S)μ  KCa conductance 

gNa  180 ( S)μ  Max. Na conductance 

gK  60 ( S)μ  Max. K conductance 

gKCa  30 ( S)μ  Max. K conductance 

gCa  0.03 ( S)μ  Max. Ca​2+​ conductance 

gl  1 ( S)μ  Leak conductance 

V l  -70 (mV) Leak reversal potential 

V K  -100 (mV) K reversal potential 

V Na  50 (mV) Na reversal potential 

V Ca  150 (mV) Ca​2+​ reversal potential 

V 1  -50 (mV) Morris-Lecar constant 

V 2  10 (mV) Morris-Lecar constant 

Δ  0.6 ( M)μ  Ca​2+​ influx rate 

k  1/200 (1 / msec) Ca​2+​ clearance rate 

γ  -0.00047 (mM / mA / msec) Ca​2+​ current conversion 
constant 

tδ  0.01 (msec) Integration time step 

 

Table 1: ​ ​Model parameters. 
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